Translator Disclaimer
Paper
12 May 1995 Intracorporeal lithotripsy with the holmium:YAG laser
Author Affiliations +
Abstract
A variety of devices are currently available for intracorporeal stone fragmentation. Recently a new wavelength of laser, the Holmium:YAG, has demonstrated a variety of potential urologic applications including ablation of soft tissue lesions as well as stone fragmentation. This laser has a wavelength of 2100 nm and operates in a pulsed mode. Energy is delivered through a 400 um quartz end-firing fiber. In this presentation we review our clinical experience with the Holmium:YAG laser for the treatment of renal and ureteral calculi. Over a 23 month period, 63 patients underwent 67 procedures. Seven procedures consisted of percutaneous nephrolithotripsy for large or staghorn renal calculi. Sixty procedures were performed for ureteral stones. Procedures for proximal ureteral stones (6) employed a retrograde approach using flexible ureteroscopes (8.5 or 9.8). Stones in the mid ureter (12) and distal ureter (42) were approached transurethrally using a 6.9 rigid ureteroscope. Complete stone fragmentation without the need for additional procedures was achieved in 82% of cases. Treatment failures included 1 stone migration into the renal pelvis during laser activation, 6 patients who had incomplete fragmentation and 3 patients in which laser malfunction precluded complete fragmentation. Stone analysis available in 23 patients revealed calcium oxalate monohydrate (15), calcium oxalate dihydrate (2), cystine (2), uric acid (3) and calcium phosphate (1). A single complication of ureteral perforation occurred when the laser was fired without direct visual guidance. Radiographic follow-up at an average of 16 weeks is available in 22 patients and has identified 2 patients with ureteral strictures that are not believed to be related to laser lithotripsy. In summary, we have found the Holmium:YAG laser to be a reliable and versatile device for intracorporeal lithotripsy. Its safety and efficacy make it a suitable alternative for performing intracorporeal lithotripsy of urinary calculi.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
John D. Denstedt M.D., Hassan A. Razvi, Samuel S. Chun M.D., and Jack L. Sales M.D. "Intracorporeal lithotripsy with the holmium:YAG laser", Proc. SPIE 2395, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, (12 May 1995); https://doi.org/10.1117/12.209088
PROCEEDINGS
5 PAGES


SHARE
Advertisement
Advertisement
Back to Top