You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 April 1995Modeling of the diffraction gratings produced in As-S thin films
We have used a coupled wave analysis and solved numerically the coupled wave equations to model the performance of the diffraction gratings produced by the metal photo-dissolution effect in As - S thin films. This analysis is based on the material properties of arsenic sulphide silver doped films. We have analyzed both a sinusoidal and a square wave profile to consider both the holographic gratings and gratings produced by a mask exposure technique. Our model computes the diffraction efficiency versus two parameters (Omega) and (xi) where (Omega) is a thickness parameter and (xi) is a modulation parameter which is related to the change in the refractive index of the films. For the case of the sinusoidal profile the result of our model for very small values of (Omega) fits very well with the Bessel functions of the first kind which is the expected analytic results. As we change (Omega) from a small value of on the order of 0.01 to a value of on the order of 10, fewer diffraction orders become important in the replay of the grating with a red wavelength. For (Omega) on the order of 10 only one significant order is seen in the replay. The same results are generally obtained for the square grating. The angular response of the efficiency for a typical grating shows that the efficiency is a maximum near the Bragg angle. This result is in good agreement with the experimental results of the diffraction efficiency measurements obtained on a grating with the same parameters.
The alert did not successfully save. Please try again later.
Abdolnasser Zakery, M. Hatami, "Modeling of the diffraction gratings produced in As-S thin films," Proc. SPIE 2404, Diffractive and Holographic Optics Technology II, (20 April 1995); https://doi.org/10.1117/12.207467