You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 March 1995Improved compression performance using singular value decomposition (SVD)-based filters for still images
It is well known that random noise on images significantly affects the efficiency of compression algorithms. Traditional spectral filtering techniques are effective in many cases but may require some prior knowledge of the noise and image characteristics. Furthermore, the processing requirements of spectral filters strongly depend on their noise rejection properties. In this paper we present a block-based, non-linear, filtering technique based on the Singular Value Decomposition (SVD). Traditional applications of SVD to image processing rely on heuristics to estimate the noise power and are usually applied to the entire image. The proposed scheme employs a complexity-theoretical criterion for noise estimation which exploits the well known property that random noise is hard to compare. By combining SVD with a lossless compression algorithm, in our case lossless JPEG, we can estimate the noise power and derive accurate SVD thresholds for noise removal. Simulation results on grayscale images contaminated by additive noise show that the technique can effectively filter noisy images and improve compression performance with no prior knowledge of either the image or the noise characteristics. Furthermore, the technique does not cause any blurring, unlike linear filtering techniques or median filtering.
The alert did not successfully save. Please try again later.
Konstantinos Konstantinides, Gregory S. Yovanof, "Improved compression performance using SVD-based filters for still images," Proc. SPIE 2418, Still-Image Compression, (3 March 1995); https://doi.org/10.1117/12.204120