You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 March 1995Generalizing edit distance for handwritten text recognition
In this paper the Damerau-Levenshtein string difference metric is generalized in two ways to more accurately compensate for the types of errors that are present in the script recognition domain. First, the basic dynamic programming method for computing such a measure is extended to allow for merges, splits and two-letter substitutions. Second, edit operations are refined into categories according to the effect they have on the visual `appearance' of words. A set of recognizer-independent constraints is developed to reflect the severity of the information lost due to each operation. These constraints are solved to assign specific costs to the operations. Experimental results on 2,335 corrupted strings and a lexicon of 21,299 words show higher correcting rates than with the original form.
The alert did not successfully save. Please try again later.
Giovanni Seni, V. Kripasundar, Rohini K. Srihari, "Generalizing edit distance for handwritten text recognition," Proc. SPIE 2422, Document Recognition II, (30 March 1995); https://doi.org/10.1117/12.205841