The McClellan Nuclear Radiation Center's (MNRC) staff in conjunction with a Cooperative Research and Development Agreement (CRDA) with the U.C. Santa Barbara facility has developed a system that can be used for aircraft inspection of jet engine blades. The problem was to develop an inspection system that can detect very low concentrations of hydrogen (i.e., greater than 100 ppm) in metal matricies. Specifically in Titanium alloy jet engine blades. Entrapment and precipitation of hydrogen in metals is an undesirable phenomenon which occurs in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties after long exposures to hydrogen, especially at high temperatures and pressures, thereby becoming embrittled. Neutron radiography has been used as a nondestructive testing technique for many years. Neutrons, because of their unique interactions with materials, are especially useful in the detection of hydrogen. They have an extremely high interaction cross section for low atomic number nuclei (i.e., hydrogen). Thus hydrogen in a metal matrix can be visualized using neutrons. Traditional radiography is sensitive to the total attenuation integrated over the path of radiation through the material. Increased sensitivity and quantitative cross section resolution can be obtained using three-dimensional volumetric imaging techniques such as tomography. The solution used to solve the problem was to develop a neutron tomography system. The neutron source is the McClellan Nuclear Radiation Center's 1 MW TRIGA reactor. This paper describes the hardware used in the system as well as some of the preliminary results.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
James C. Crump, James C. Crump, Wade J. Richards, Wade J. Richards, Kevin C. Shields, Kevin C. Shields, "Neutron tomography", Proc. SPIE 2455, Nondestructive Evaluation of Aging Aircraft, Airports, Aerospace Hardware, and Materials, (7 July 1995); doi: 10.1117/12.213527; https://doi.org/10.1117/12.213527

Back to Top