You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 June 1995Fibered recombination unit for the Infrared-Optical Telescope Array
The Infrared Optical Telescope Array (IOTA) is an interferometric facility currently observing in the near infrared bands at the Smithsonian Institution's Fred Lawrence Whipple Observatory in Arizona. The 45 cm siderostats can be moved on an L-shaped track allowing discrete bases ranging between 5 and 38 m. The capability to combine beams with fiber optics in the K band (2 micrometers <EQ (lambda) <EQ 2.4 micrometers ) has been demonstrated on the Fiber Link Unit for Optical Recombination (FLUOR) at Kitt Peak National Observatory, in which two existing 0.8 m telescopes have been coherently coupled by means of optical fibers. FLUOR is now set as a focal instrument of IOTA. It uses single-mode fluoride glass waveguides and couplers as a substitute for mirrors and beamsplitters to perform beam transportation and recombination. Processing the light in single-mode waveguides offers the possibility to self-calibrate each interferogram against the loss of fringe visibility induced by atmospheric turbulence, thus improving the accuracy of the fringe visibility measurements. The FLUOR unit can be operated as a Mach-Zehnder interferometer to produce zero-baseline spectra used in double-Fourier interferometry to obtain the visibility as a function of wavelength. In the current status, a N-S baseline of 21.2 m is used to observe late-type starts and derive their angular diameters.
The alert did not successfully save. Please try again later.
Guy S. Perrin, Vincent Coude du Foresto, Stephen T. Ridgway, Jean-Marie Mariotti, James A. Benson, "Fibered recombination unit for the Infrared-Optical Telescope Array," Proc. SPIE 2476, Fiber Optics in Astronomical Applications, (14 June 1995); https://doi.org/10.1117/12.211845