12 June 1995 Analysis, understanding, and visualization of hyperspectral data as convex sets in n space
Author Affiliations +
Abstract
Convex and affine geometry in n-dimensions provide powerful tools for the analysis, understanding, and visualization of hyperspectral data. The ubiquitous mixed pixel problem can be exploited as an advantage and is easily cast in an n-d convexity context. Convexity concepts can be used to identify the purest pixels in a given scene and to unravel spectral mixing, both fully and partially. Visualization techniques based on these concepts permit human interpretation of all spectral information of all image pixels simultaneously. Convex geometry forms a natural framework for the unique challenges associated with analysis of hyperspectral data.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Joseph W. Boardman, "Analysis, understanding, and visualization of hyperspectral data as convex sets in n space", Proc. SPIE 2480, Imaging Spectrometry, (12 June 1995); doi: 10.1117/12.210878; https://doi.org/10.1117/12.210878
PROCEEDINGS
9 PAGES


SHARE
Back to Top