You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 September 1995Candidate future atmospheric sounder for the converged U.S. meteorological system
The atmospheric infrared sounder (AIRS) is being developed for the NASA Earth Observing System (EOS) program with a scheduled launch on the first post meridian (PM) platform in the year 2000. AIRS is designed to provide both new and more accurate data about the atmosphere, land, and oceans for applications to climate studies and weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1K in 1 kilometer (km) layers in the troposphere and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on very sensitive passive IR remote sensing using a precisely calibrated, high spectral resolution grating spectrometer operating in the 3.7 micrometers to 15.4 micrometers region. The instrument concept utilizes a passively cooled multiaperture echelle array spectrometer approach in combination with advanced state of the art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. AIRS is a key component of NASA's Global Change Research Program and is expected to play an important role in fulfilling the needs of the converged National Polar- Orbiting Operating Environment Satellite System (NPOESS) now under study. This paper provides a brief overview of the mission followed by a description of the instrument design and current development status.
The alert did not successfully save. Please try again later.
Paul G. Morse, Christopher R. Miller, Moustafa T. Chahine, Fred O'Callaghan, Hartmut H. Aumann, Avinash R. Karnik, "Candidate future atmospheric sounder for the converged U.S. meteorological system," Proc. SPIE 2553, Infrared Spaceborne Remote Sensing III, (29 September 1995); https://doi.org/10.1117/12.221369