You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 September 1995Wavelet analysis of random fields and multiresolution Wiener filtering
We explore the relationship between random processes and wavelets in multiple dimensions and their application to statistical signal processing. To this end, we introduce a multiresolution Wiener filter (MWF) that is applied to the wavelet coefficients of a random process. The MWF is based upon the multiresolution Wiener-Hopf (MWH) equation, which is derived using orthogonal projection theorem on a Hilbert space. The MWH is applied to the solution of the signal estimation problem for both stationary and fractional Brownian motion (fBm) processes. A theoretical mean square error is calculated for the MWF and its values compared to experimental data.
The alert did not successfully save. Please try again later.
Kevin West Bowman, Christian Houdre, "Wavelet analysis of random fields and multiresolution Wiener filtering," Proc. SPIE 2569, Wavelet Applications in Signal and Image Processing III, (1 September 1995); https://doi.org/10.1117/12.217586