You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 December 1995Fitting remote sensing data with linear bidirectional reflectance models
Kernel-driven linear bidirectional reflectance models are gaining increasing attention for their potential use in operational processing of global remote sensing data. Nevertheless, the ability of these models to simulate actual reflectance anisotropy has not been completely explored with remote sensing data. To assess the suitability of linear models for the MODIS atmospheric correction system, we inverted a series of models with AVHRR and MODIS airborne simulator (MAS) data. For comparison, we also fit 2-stream turbid medium models to the respective data sets. Although the more complex models produced more accurate fits, the linear models were acceptably accurate and considerably faster. We conclude that linear models perform with sufficient speed and accuracy for atmospheric correction algorithms.
The alert did not successfully save. Please try again later.
Jeffrey L. Privette, Eric F. Vermote, "Fitting remote sensing data with linear bidirectional reflectance models," Proc. SPIE 2586, Global Process Monitoring and Remote Sensing of the Ocean and Sea Ice, (18 December 1995); https://doi.org/10.1117/12.228620