You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 December 1995SATBOT 1: prototype of a biomorphic autonomous spacecraft
Our goal is to produce a prototype of an autonomous robot satellite, SATBOT. This robot differs from conventional robots in that it has three degrees of freedom, uses magnetics to direct the motion, and needs a zero gravity environment. The design integrates the robot's structure and a biomorphic (biological morphology) control system to produce a survival- oriented vehicle that adapts to an unknown environment. Biomorphic systems, loosely modeled after biological systems, use simple analog circuitry, are low power, and are microprocessor independent. These analog networks, called nervous networks (Nv), are used to solve real-time controls problems. The Nv approach to problem solving in robotics has produced many surprisingly capable machines which exhibit emergent behavior. The network can be designed to respond to positive or negative inputs from a sensor and produce a desired directed motion. The fluidity and direction of motion is set by the neurons and is inherent to the structure of the device. The robot is designed to orient itself with respect to a local magnetic field; to direct its attitude toward the greatest source of light; and robustly recover from variations in the local magnetic field, power source, or structural stability. This design uses a two neuron network which acts as a push-pull controller for the actuator (air core coil), and two sun sensors (photodiodes) as bias inputs to the neuron. The effect of sensor activation on an attractive or repulsive torque (directional motion) is studied. A discussion of this system's energy and frequency, noise immunity, and some dynamic characteristics is presented.
The alert did not successfully save. Please try again later.
Janette R. Frigo, Mark W. Tilden, "SATBOT 1: prototype of a biomorphic autonomous spacecraft," Proc. SPIE 2591, Mobile Robots X, (27 December 1995); https://doi.org/10.1117/12.228988