30 September 1996 Affine-invariant tetrahedrization
Author Affiliations +
Delaunay triangulation is the dual of Dirichlet tessellation is not affine invariant. In other words, the triangulation is dependent upon the choice of the coordinate axes used to represent the vertices. In the same reason, Delaunay tetrahedrization does not have an affine invariant transformation property. In this paper, we present a new type of tetrahedrization of spacial points sets which is unaffected by translations, scalings, shearings and rotations. An affine invariant tetrahedrization is discussed as a means of affine invariant 2D triangulation extended to 3D tetrahedrization. A new associate norm between two points in 3D space is defined. The visualization of tetrahedrization (i.e. tetrahedral domain, representative data points and transformed data points) can discriminate between Delaunay tetrahedrization and affine invariant tetrahedrization.
© (1996) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kun Lee, Kun Lee, } "Affine-invariant tetrahedrization", Proc. SPIE 2826, Vision Geometry V, (30 September 1996); doi: 10.1117/12.251808; https://doi.org/10.1117/12.251808


The construction of the milling process simulation models
Proceedings of SPIE (September 27 2016)
Scientific Work Environments In The Next Decade
Proceedings of SPIE (September 10 1989)
Synthetic display of 3D terrain and objects
Proceedings of SPIE (March 21 1996)
Parametrization of curves and surfaces
Proceedings of SPIE (July 31 1990)

Back to Top