You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 October 1996Modeling and measurement of optical turbulence by tomographic imaging of a heated air flow
An eight-view tomographic system based on one-dimensional Hartmann sensors is currently in use to image heated air flows. The system produces two-dimensional maps of refractive index at rates of several kilohertz. The high rate and good resolution enable comparison of measured results to expected results from fluid flow models. However, the novel nature of the application complicates validation of the system's performance. This paper describes computer simulations and experimental results quantifying the performance of the tomographic system at resolving spatial and temporal structures within the flow. The computer simulations model the physics and noise sources inherent in the wavefront sensing and tomographic imaging systems. An error budget for the system and an effective resolution metric allow quantitative comparison of performance against a given model of the flow. However, the accuracy of the simulation's predictions depends upon the accuracy of the disturbance model. By combining computer models of fluid flow, time averaged measurements such as temperature across the flow, and intrusive measurements such as smoke visualizations, we refine our flow model and improve the simulation. Experimental results show good agreement with this model, and the model allows us to discriminate and remove reconstruction artifacts from the imaged flow.
The alert did not successfully save. Please try again later.
Robert E. Pierson, Ellen Y. Chen, Kenneth P. Bishop, Lenore J. McMackin, "Modeling and measurement of optical turbulence by tomographic imaging of a heated air flow," Proc. SPIE 2827, Digital Image Recovery and Synthesis III, (25 October 1996); https://doi.org/10.1117/12.255077