You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 October 1996Separating desired image and signal invariant components from extraneous variations
Images and signals can be characterized by representations invariant to time shifts, spatial shifts, frequency shifts, and scale changes as the situation dictates. Advances in time-frequency analysis and scale transform techniques have made this possible. The next step is to distinguish between invariant forms representing different classes of image or signal. Unfortunately, additional factors such as noise contamination and `style' differences complicate this. A ready example is found in text, where letters and words may vary in size and position within the image segment being examined. Examples of complicating variations include font used, corruption during fax transmission, and printer characteristics. The solution advanced in this paper is to cast the desired invariants into separate subspaces for each extraneous factor or group of factors. The first goal is to have minimal overlap between these subspaces and the second goal is to be able to identify each subspace accurately. Concepts borrowed from high-resolution spectral analysis, but adapted uniquely to this problem have been found to be useful in this context. Once the pertinent subspace is identified, the recognition of a particular invariant form within this subspace is relatively simple using well-known singular value decomposition techniques.
The alert did not successfully save. Please try again later.
William J. Williams, Eugene J. Zalubas, Alfred O. Hero III, "Separating desired image and signal invariant components from extraneous variations," Proc. SPIE 2846, Advanced Signal Processing Algorithms, Architectures, and Implementations VI, (22 October 1996); https://doi.org/10.1117/12.255439