You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 November 1996Digital image processing system for a high-powered CO2 laser radar
Textron has designed and built a high-powered CO2 laser radar for long range targeting and remote sensing. This is a coherent, multi-wavelength system with a 2D, wide-band image processing capability. The digital processor produces several output products from the transmitter return signals including range, velocity, angle, and 2D range-Doppler images of hard-body targets (LADAR mode). In addition, the processor sorts and reports on data acquired from gaseous targets by wavelength and integrated path absorption (LIDAR mode). The digital processor has been developed from commercial components with a SUN SPARC 20 serving as the operator workstation and display. The digital output products are produced in real time and stored off-line for post-mission analysis and further target enhancements. This LADAR is distinguished from other designs primarily by the waveforms produced by the laser for target interrogation. The digital processing algorithms are designed to extract certain features through operation on each of the two waveforms. The waveforms are a pulse-tone and a pulse-burst designed for target acquisition and track, and 2D imaging respectively. The algorithms are categorized by function as acquisition/track, 2D imaging, integrated absorption for gaseous targets, and post mission enhancements such as tomographic reconstruction for multiple looks at targets from different perspectives. Field tests are now in process and results acquired from Feb.-June '96 will be reported on. The digital imaging system, its architecture, algorithms, simulations, and products will be described.
The alert did not successfully save. Please try again later.
Francis J. Corbett, Michael Groden, Gordon L. Dryden, George Pfeiffer, Robert Boos, Douglas G. Youmans, "Digital image processing system for a high-powered CO2 laser radar," Proc. SPIE 2847, Applications of Digital Image Processing XIX, (14 November 1996); https://doi.org/10.1117/12.258240