PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Low-cost linear arrays of deflectable micromirrors using a CMOS process to define both on-chip circuitry and the mirror structure are presented. The mirrors consist of the second CMOS metallization deposited in two successive passes in order to establish a thick metal layer for the stiff mirror plate as well as a thin one for the flexible hinges. The mirrors are released by sacrificial aluminum and oxide etching. Supercritical point drying is performed in order to avoid sticking of the mirrors to the substrate. The mirrors are electrostatically deflected by biasing the address electrodes implanted into the substrate underneath the mirror plate. Full angular deflection of 4.8 degree(s) of a 30 X 40 micrometers 2 plate is achieved with a driving voltage of 12 V. On-chip circuitry adjacent to each mirror allows to address the pixels by 5 V data pulses. The reflectivity of the aluminum surface for wavelength between 400 and 700 nm was measured to be 83 - 89%. The mirror surface was further characterized using Auger spectroscopy showing that no optically relevant surface modification occur during post- processing. The surface rms roughness measured by atomic force microscopy is in the order of 25 nm.
Johannes Buehler,Franz-Peter Steiner, andHenry Baltes
"Linear array of CMOS double pass metal micromirrors", Proc. SPIE 2881, Microelectronic Structures and MEMS for Optical Processing II, (23 September 1996); https://doi.org/10.1117/12.251258
ACCESS THE FULL ARTICLE
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Johannes Buehler, Franz-Peter Steiner, Henry Baltes, "Linear array of CMOS double pass metal micromirrors," Proc. SPIE 2881, Microelectronic Structures and MEMS for Optical Processing II, (23 September 1996); https://doi.org/10.1117/12.251258