You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 September 1996Edge-preserving vector quantization using a neural network
Recently the vector quantization (VQ) has received considerable interests as a powerful image data compression technique. However, studies of image coding with VQ have revealed that VQ for image compression suffers from edge degradation in the reproduced images. In this paper, we describe an adaptive learning method of the edge preserving VQ based on Kohonen's self-organizing feature map neural network. The learning procedure is performed by extracting the edge of the whole image, then adaptively adjusting the learning rate that are determined by the edge information of the image block. Compared with direct image VQ coding, the experiment results show the reproduced images quality are well improved, at the same compression ratio.
The alert did not successfully save. Please try again later.
Xujun Ye, Zhineng Li, "Edge-preserving vector quantization using a neural network," Proc. SPIE 2898, Electronic Imaging and Multimedia Systems, (30 September 1996); https://doi.org/10.1117/12.253397