20 January 1997 Single-camera fixed perspective 360-deg 3D method
Author Affiliations +
Abstract
The use of 3D methods for such applications as feature locations within a wide field-of-view, such as for automated guided vehicles or large assembly work, offers some distinct challenges. The use of stereo viewing has often been the method of choice due to the wide area coverage and hardware simplicity. However, stereo based methods suffer from a loss of spatial position resolution for more distant object as compared to close objects due to the high demagnification needed to cover large fields-of-view. A long depth-of-field in such systems may also degrade the general ability to perform correlations due to poor focus. In addition, stereo looses distance resolution for features nearing the line of the two cameras, typically requiring movement of the cameras. The paper presents a novel method of obtaining 3D scene information as seen from the center of a cylindrical field. The method described uses a single camera with a view that is rotated through 360 degrees by means of a continuously rotating mirror. The viewing systems uses a constant field of view optical system that provides a constant X-Y resolution of features in the scene over depths of several meters. Comparing successive images with the readout from an encoder on the rotating mirror generates all locations of objects within a limited height cylinder. This paper will discuss the sources of errors and typical capabilities of this approach in light of a real-time part location tracking application useful in assembly systems.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kevin G. Harding, Kevin G. Harding, Robert K. Fergan, Robert K. Fergan, } "Single-camera fixed perspective 360-deg 3D method", Proc. SPIE 2909, Three-Dimensional Imaging and Laser-Based Systems for Metrology and Inspection II, (20 January 1997); doi: 10.1117/12.263313; https://doi.org/10.1117/12.263313
PROCEEDINGS
8 PAGES


SHARE
RELATED CONTENT


Back to Top