8 May 1997 Influence of benzoporphyrin-derivative monoacid ring A (BPD-MA, verteporfin) on murine dendritic cells
Author Affiliations +
Abstract
The impact of bensoporphyrin derivative monoacid ring A, and visible light was determined for mouse splenic dendritic cells (DC), potent antigen-presenting cells (APC) of the immune system. It was discovered that sub-lethal doses of BPD-MA and light significantly altered the surface receptor pattern of DC as well as diminishing the capacity of these cells to activate allogeneic T cells. Treatment of highly purified DC with BPD-MA and 690 nm wavelength light decreased DC expression of major histocompatibility (MHC) Class I and II antigens, leukocyte common antigen CD45, intercellular adhesion molecule-1 (ICAM-1, CD54), the co- stimulatory molecules CD80 and CD86, CD95 as well as integrin CD11c. In contrast, DC expression of leukocyte function-associated-1 (LFA-1, CD11a), CD11b, CD18, CD40, and the DC DEC-205 receptor increased after the treatment. Changes in receptor levels occurred rapidly. DC MHC Class I and ICAM-1 expression declined to 40 percent of control levels by 2 hours post-PDT. DC treated with BPD-MA and light were poor stimulators of allogeneic T cells in the mixed leukocyte reaction. BPD-MA, in the absence of light, had no effect on the immunostimulatory properties of these cells. The changes in DC receptor expression pattern produced by BPD-MA and light were comparable to those produced by ultraviolet B light, a treatment known to alter the immunostimulatory characteristics of DC. Photodynamic therapy with BPD-MA represents an innovative approach for the modification of immune reactivity.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
David W. C. Hunt, David W. C. Hunt, Diane E. King, Diane E. King, Julia G. Levy, Julia G. Levy, } "Influence of benzoporphyrin-derivative monoacid ring A (BPD-MA, verteporfin) on murine dendritic cells", Proc. SPIE 2972, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy VI, (8 May 1997); doi: 10.1117/12.273495; https://doi.org/10.1117/12.273495
PROCEEDINGS
12 PAGES


SHARE
Back to Top