Translator Disclaimer
18 August 1997 Laser optoacoustic tomography of layered tissues: signal processing
Author Affiliations +
Abstract
Laser optoacoustic imaging experiments in biological tissues in vivo are presented along with the theoretical signal analysis procedure. The laser optoacoustic imaging system (LOIS) can operate in the reflection mode with emphasis on high z-axial (in-depth) resolution (up to 10 - 20 micrometers). Two examples of LOIS applications for non- invasive in vivo medical diagnostics are presented and discussed: (1) characterization of layered structure of port- wine stains, and (2) measurements of skin melanoma thickness. Potential miniaturization of LOIS for endoscopy applications is also discussed. The z-axial profiles of laser-induced pressure were shown to contain diagnostic information on location, dimensions and optical properties of tissue layers. Time-resolved signals detected by piezoelectric transducers were corrected for distortions such as diffraction and acoustic attenuation that occur upon pressure wave propagation in tissue. Wavelet transform applied to signals of laser- induced acoustic emission yielded high contrast pressure profiles with substantial signal-to-noise ratio.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alexander A. Oraevsky, Rinat O. Esenaliev, and Alexander A. Karabutov "Laser optoacoustic tomography of layered tissues: signal processing", Proc. SPIE 2979, Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, (18 August 1997); https://doi.org/10.1117/12.280297
PROCEEDINGS
12 PAGES


SHARE
Advertisement
Advertisement
Back to Top