Paper
9 May 1997 Payload isolation system for launch vehicles
Paul S. Wilke, Conor D. Johnson, Eugene R. Fosness
Author Affiliations +
Abstract
A spacecraft is subjected to very large dynamic forces from its launch vehicle during its ascent into orbit. These large forces place stringent design requirements on the spacecraft and its components to assure that the trip to orbit will be survived. The severe launch environment accounts for much of the expense of designing, qualifying, and testing satellite components. Reduction of launch loads would allow more sensitive equipment to be included in missions, reduce risk of equipment or component failure, and possibly allow the mass of the spacecraft bus to be reduced. These benefits apply to military as well as commercial satellites. This paper reports the design and testing of a prototype whole-spacecraft isolation system which will replace current payload attach fittings, is passive-only in nature, and provides lateral isolation to a spacecraft which is mounted on it. This isolation system is being designed for a medium launch vehicle and a 6500 lb spacecraft, but the isolation technology is applicable to practically all launch vehicles and spacecraft, small and large. The feasibility of such a system on a small launch vehicle has been demonstrated with a system-level analysis which shows great improvements. The isolator significantly reduces the launch loads seen by the spacecraft. Follow-on contracts will produce isolating payload attach fittings for commercial and government launches.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Paul S. Wilke, Conor D. Johnson, and Eugene R. Fosness "Payload isolation system for launch vehicles", Proc. SPIE 3045, Smart Structures and Materials 1997: Passive Damping and Isolation, (9 May 1997); https://doi.org/10.1117/12.274215
Lens.org Logo
CITATIONS
Cited by 9 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Space operations

Optical isolators

Finite element methods

Satellites

Analytical research

Vibration isolation

Data modeling

Back to Top