You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 July 1997Photoresist characterization for lithography simulation: II. Exposure parameter measurements
Lithography simulation has become an increasingly important tool for the semiconductor industry as attempts are made to extend current lithographic technologies. The usefulness of this simulation capability has been somewhat hindered by the lack of availability of accurate modeling parameters for the various commercial resist systems. In particular, three sets of data are required to model a typical non-chemically amplified photoresist: the refractive index as a function of wavelength and exposure, the exposure or ABC parameters (the Dill parameters), and the development parameters. This work focuses on the accurate extraction of exposure parameters for non-chemically amplified resists. Previous exposure parameter extraction techniques such as those proposed by Dill involve a number of simplifying assumptions including the assumption that the refractive index of the resist does not change during exposure and that the index of the substrate is matched to the resist throughout the exposure process. However, the refractive index of the photoresist does vary during exposure as the chemical composition of the photoresist changes. A rigorous analysis technique for extracting exposure parameters which accounts for this refractive index change and other previously ignored factors has been developed. An apparatus has been constructed to perform bleaching experiments on non- chemically amplified resists and this new, rigorous analysis technique has been used to extract exposure parameters for a series of commercial resists. Some of the results of these studies are presented together with comparisons to previous parameter extraction techniques.
The alert did not successfully save. Please try again later.
Clifford L. Henderson, Sanju Pancholi, Sajed A. Chowdhury, C. Grant Willson, Ralph R. Dammel, "Photoresist characterization for lithography simulation: II. Exposure parameter measurements," Proc. SPIE 3049, Advances in Resist Technology and Processing XIV, (7 July 1997); https://doi.org/10.1117/12.275883