16 June 1997 Fusion rule estimation using vector space methods
Author Affiliations +
In a system of N sensors, the sensor (formula available in paper) The problem is to estimate a fusion rule (formula available in paper), based on the sample, such that the expected square error is minimized over a family of functions F that constitute a vector space. The function f* that minimizes the expected error cannot be computed since the underlying densities are unknown, and only an approximation f to f* is feasible. We estimate the sample size sufficient to ensure that f provides a close approximation to f* with a high probability. The advantages of vector space methods are two-fold: (1) the sample size estimate is a simple function of the dimensionality of F, and (2) the estimate f can be easily computed by well-known least square methods in polynomial time. The results are applicable to the classical potential function methods and also (to a recently proposed) special class of sigmoidal feedforward neural networks.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Nageswara S. V. Rao, Nageswara S. V. Rao, } "Fusion rule estimation using vector space methods", Proc. SPIE 3067, Sensor Fusion: Architectures, Algorithms, and Applications, (16 June 1997); doi: 10.1117/12.276123; https://doi.org/10.1117/12.276123

Back to Top