You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 March 1997Compact portable optical correlator with binary ferroelectric SLMs and optimum filters for disjoint noise applied to varying illumination conditions
A compact optical correlator based on binary liquid crystal spatial light modulators has been built. The correlator has a 21 X 28 cm2 footprint and can process 256 X 256 pixel images at a maximum frame rate of 220 Hz. The system is insensitive to transportation and can be used both in VLC and JTC configuration. It can process live images from an external camera as well as images from computer memory. Variations of illumination conditions can change the graylevels and perceptible details of a target considerably. When this is the case, classical filters like phase only and optimal trade-off fail to detect the target. An improvement of the results can be achieved by using the optimum generalized filter. In most cases, the contour of the target remains more or less the same even if the graylevels are fluctuating. We show that by edge-enhancing and binarizing the input images used together with the optimum generalized filter we can achieve comparable results as compared to using grayscale images.