7 July 1997 Thermally actuated piston micromirror arrays
Author Affiliations +
Abstract
This paper reports design and characterization testing of thermally actuated piston micromirror arrays. The micromirrors were fabricated in the DARPA-sponsored MUMPs polysilicon surface micromachining process. The power averaging characteristic of thermal actuation is exploited in a novel line addressing scheme which reduces wiring for an n2 array to 2n wires. Mirror deflections were measured with a microscope laser interferometer system equipped with a vacuum chamber. Data presented includes device uniformity, frequency response, and deflection versus drive power for varied ambient pressure. Initial test results confirm that thermally actuated piston micromirrors offer several advantages over more common electrostatic designs. Thermally actuated micromirrors offer greater deflections at drive voltages compatible with CMOS circuitry. Measured thermal piston micromirror deflection versus drive voltage is nonlinear, but does not exhibit the 'snap through instability' characteristic of electrostatic devices. Operation of thermally actuated devices in rarefied ambient significantly decreases power dissipation. For a given deflection range, the power reduction facilitated by vacuum operation makes large arrays feasible. Frequency response of thermally actuated devices is limited by the ability of the device to dissipate heat, but operation at 1 kHz rates is feasible.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
William D. Cowan, Victor M. Bright, "Thermally actuated piston micromirror arrays", Proc. SPIE 3131, Optical Scanning Systems: Design and Applications, (7 July 1997); doi: 10.1117/12.277757; https://doi.org/10.1117/12.277757
PROCEEDINGS
12 PAGES


SHARE
Back to Top