You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 October 1997Design of thin-film filters for the monitoring of chemical reactions
A new optical computation method for the monitoring of chemical reactions requires filters with spectral transmittance curves that vary in a complicated way with wavelength. In this paper we consider the design of two different sets of filters, one of which could be used to predict the degree of curing of a polymer from an analysis of its Raman spectra. The problem is not easy because the required filters have sharp spectral features in a narrow spectral region. Two different design methods are used. The performance of one set designed by conventional means is very close to the specifications. However, current thin film deposition methods are probably incapable of producing filters of such thickness. The second solution is based on the use of several filters placed in series. It should be possible to implement this particular solution, but its performance is not nearly as good. Nevertheless, calculations indicate that this filter pair should also result in a satisfactory control of the curing process.
The alert did not successfully save. Please try again later.
Jerzy A. Dobrowolski, Pierre G. Verly, Michael L. Myrick, Matthew P. Nelson, Jeffrey F. Aust, "Design of thin-film filters for the monitoring of chemical reactions," Proc. SPIE 3133, Optical Thin Films V: New Developments, (1 October 1997); https://doi.org/10.1117/12.290200