20 October 1997 Sandwich distances
Author Affiliations +
Abstract
Many authors, e.g., Rosenfeld and Pfaltz, Borgefors..., have proposed efficient and/or accurate approximations of euclidian distance on a 2D or 3D grid with methods which are connected, more or less directly, to norm derived distances, e.g., with Lp norms. This paper enlarges the scope in a continuous and m-dimensional framework. It presents a new broad class of distances, called 'sandwich' or 'periodic' distances. They are obtained by compounding in a periodic manner a certain number of norm-derived distances. The main result of this paper is the proof of a sufficient condition under which the triangular inequality is fulfilled, i.e., that the unit balls of the compounded distances belong to an ascending chain. Moreover, the theory includes weighted distances, giving this tool a high degree of flexibility.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jean-Marie Becker, Jean-Marie Becker, Dinu Coltuc, Dinu Coltuc, Michel Jourlin, Michel Jourlin, } "Sandwich distances", Proc. SPIE 3168, Vision Geometry VI, (20 October 1997); doi: 10.1117/12.279652; https://doi.org/10.1117/12.279652
PROCEEDINGS
11 PAGES


SHARE
Back to Top