10 December 1997 Analysis of single mirror surface for correcting line-scanning distortion
Author Affiliations +
Proceedings Volume 3204, Three-Dimensional Imaging and Laser-based Systems for Metrology and Inspection III; (1997) https://doi.org/10.1117/12.294449
Event: Intelligent Systems and Advanced Manufacturing, 1997, Pittsburgh, PA, United States
Abstract
The control of optical distortion is useful for the design of a variety of optical systems especially those used for laser scanning. The optics used for focusing a laser beam onto a flat image field must satisfy the f-(theta) condition (the image height is proportional to the input field angle) to produce a constant scan velocity across the image plane. We analyze and compared the optical performances produced by several single surface reflector as line scanning distortion corrector. Our guideline is a distortion less than 0.1% typically used in the industry. For particular reflector we are always able to find the right position for the scanning mirror to produce in the image field a correct scan line. Our results show a linear dependence of the maximum scanning angle which the errors is less than 0.1% and the scanning beam f- number. At the same time, the mirror f-number is inversely proportional to the scanning beam f-number. Then bigger is the mirror f/#, smaller is the size of the scanning spot and the scan angle. We compute four graphs that can be used easily and gives a complete picture of the performance produced from a single reflecting surface as distortion corrector.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Simon Thibault, Simon Thibault, Stan Szapiel, Stan Szapiel, } "Analysis of single mirror surface for correcting line-scanning distortion", Proc. SPIE 3204, Three-Dimensional Imaging and Laser-based Systems for Metrology and Inspection III, (10 December 1997); doi: 10.1117/12.294449; https://doi.org/10.1117/12.294449
PROCEEDINGS
7 PAGES


SHARE
RELATED CONTENT


Back to Top