PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This paper reports on the design and fabrication of surface acoustic wave (SAW) devices using lithium niobate (LiNbO3) as a substrate. Sol-gel prepared doped TiO2 thin films have been deposited onto the SAW devices by spin-coating. Modeling and simulation has been performed to predict the performance of SAW oxygen sensor using a high frequency electronics computer software package (HP-EEsofTM). Experimental work has been carried out for the purpose of evaluation of the simulated results. Resistivity of doped TiO2 thin films has been found to decrease by 47 fold when oxygen concentration decreases from 1% to 1 ppm at a working temperature of 200 degrees Celsius. The frequency shift of the SAW oxygen sensor has been measured as 180 kHz for the same change in oxygen concentration. Our preliminary experiments highlighted that the doped TiO2-coated SAW sensors can detect oxygen in the concentration range of 1 ppm-1%.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.