1 July 1998 Laser treatment of port wine stains: three-dimensional simulation using biopsy-defined geometry in an optical-thermal model
Author Affiliations +
Proceedings Volume 3245, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII; (1998) https://doi.org/10.1117/12.312302
Event: BiOS '98 International Biomedical Optics Symposium, 1998, San Jose, CA, United States
Abstract
The efficacy of laser treatment of port wine stains (PWS) has been shown to be highly dependent on the patient-specific structure of vascular lesions. To improve the accuracy of PWS numerical models, an optical-thermal model simulating an arbitrarily complex, three dimensional tissue geometry has been developed. In this model, the distribution of absorbed radiant energy -- determined using a modified Monte Carlo technique -- is used as the source term in a finite difference thermal model that predicts transient temperature rise. The Arrhenius rate process integral is then used to calculate thermal damage. Simulations based on a tomographic reconstruction of a PWS biopsy were performed for laser pulse durations of 0.5, 5.0 and 50.0 ms and a wavelength of 585 nm. Irradiances that produced maximum tissue temperatures of 120 degrees Celsius were used. The simulations indicated that energy deposition in blood is primarily a function of depth in skin. Thermal diffusion effects increased with longer pulse duration, leading to collateral damage observed at 5.0 and 50.0 ms. A pulse duration of 0.5 ms resulted in confinement of thermal damage to blood regions. Clusters of small vessels tended to behave similarly to larger vessels, reaching higher temperatures and creating more damage in the surrounding dermis than isolated vessels. The incorporation of realistic geometry into an optical-thermal model represents a significant advance in computer modeling of laser surgery.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
T. Joshua Pfefer, T. Joshua Pfefer, Jennifer Kehlet Barton, Jennifer Kehlet Barton, Derek J. Smithies, Derek J. Smithies, Thomas E. Milner, Thomas E. Milner, J. Stuart Nelson, J. Stuart Nelson, Martin J. C. van Gemert, Martin J. C. van Gemert, Ashley J. Welch, Ashley J. Welch, } "Laser treatment of port wine stains: three-dimensional simulation using biopsy-defined geometry in an optical-thermal model", Proc. SPIE 3245, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, (1 July 1998); doi: 10.1117/12.312302; https://doi.org/10.1117/12.312302
PROCEEDINGS
12 PAGES


SHARE
Back to Top