Paper
24 April 1998 Investigating laser/blood-vessel interaction with color Doppler optical coherence tomography
Author Affiliations +
Proceedings Volume 3251, Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II; (1998) https://doi.org/10.1117/12.306044
Event: BiOS '98 International Biomedical Optics Symposium, 1998, San Jose, CA, United States
Abstract
A non-invasive method of imaging laser irradiated blood vessels, and of tracking the healing response, has been achieved using Color Doppler Optical Coherence Tomography (CDOCT). This method may increase understanding of the mechanisms behind treatment of vascular disorders such as port wine stains. The CDOCT system uses a superluminescent diode with a center wavelength of 1280 nm. Pulsed dye and KTP lasers operating at 585 and 532 nm, respectively, were used to irradiate rat and hamster dorsal skin flap window models. The window model is a chronic preparation which exposes subdermal blood vessels while maintaining a thickness of normal skin. Irradiation sites were imaged with CDOCT prior to and immediately after laser irradiation, and at intervals up to several days following irradiation. The CDOCT signal was processed to provide both magnitude and color Doppler images. The Doppler signal provides an estimate of the blood flow velocity. The response of blood vessels to radiant exposures above and below the threshold for vessel coagulation was measured. An increase in the blood vessel backscattered signal was observed as blood and vessel walls were coagulated. Changes in blood flow velocity were noted in cases where vessels constricted or flow became occluded.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jennifer Kehlet Barton, Joseph A. Izatt, and Ashley J. Welch "Investigating laser/blood-vessel interaction with color Doppler optical coherence tomography", Proc. SPIE 3251, Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, (24 April 1998); https://doi.org/10.1117/12.306044
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication and 3 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Blood vessels

Doppler effect

Photography

Blood circulation

Blood

Ferroelectric materials

Pulsed laser operation

Back to Top