You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 March 1998Fast algorithm for detection of camera motion
Most image analysis/understanding applications require accurate computation of camera motion parameters. However, in multimedia applications, particularly in video parsing, the exact camera motion parameters such as the panning and/or zooming rates are not needed. The detection--i.e., a binary decision--of camera motion is all that is required to avoid declaring a false scene change. As camera motions can induce false scene changes for video parsing algorithms, we propose a fast algorithm to detect such camera motions: camera zoom and pan. As the algorithm is only expected produce a binary decision, without the exact panning/zooming rates, the proposed algorithm runs on a reduced data set, namely the projection data. The algorithm begins with a central portion of the image and computes the projection data (or the line integrals along the x- or y-axis) to turn the 2D image data into a 1D data. This projected 1D data is further processed via correlation processing to detect camera zoom and pan. Working with projection data saves processing time by an order of magnitude, since for instance, a 2D correlation takes N2 multiplies per point, however a 1D correlation takes N multiplies per point. The efficacy of the proposed algorithm is tested for a number of image sequences and the algorithm is shown to be successful in detecting camera motions. The proposed algorithm is expected to be beneficial for video parsers working with Motion-JPEG data stream where motion vectors are not available.
The alert did not successfully save. Please try again later.
Hyeokman Kim, Tae-Hoon Kwon, Woonkyung Michael Kim, Byung-Do Rhee, Samuel Moon-Ho Song, "Fast algorithm for detection of camera motion," Proc. SPIE 3303, Real-Time Imaging III, (12 March 1998); https://doi.org/10.1117/12.302417