Many test facilities currently have the requirement to project dynamic, infrared (IR) imagery into sensors under test. This imagery must be of sufficient quality and resolution so that, sensors under test will perceive and respond just as they do to real-world scenes. In order to achieve this fidelity from an infrared micro-resistor based emitter array, Non-Uniformity Correction (NUC) is necessary. An important step in performing NUC is to calibrate the IR projection system so as to be capable of projecting a uniform temperature/IR image. The quality of the projected image is significantly enhanced by proper application of this calibration. To properly implement non-uniformity correction, it is necessary to accurately measure the IR emissions of each display element, or display pixel (dixel), in the emitter array. Performing these measurements involves collecting a large volume of data at a high rate. The U.S. Army's Test and Evaluation Command (TECOM) has developed a high-speed, relatively inexpensive and flexible means of digitally capturing IR emissions from an emitter array. This method of digitally capturing IR imagery is also useful in performing sensor and overall system characterization. TECOM has investigated, planned, and developed a non-uniformity data collection system, using primarily Commercial Off-The-Shelf (COTS) hardware and software, capable of digitally capturing the emissions of a long wave IR emitter array at 30 frames per second. The digital images are then processed to characterize individual dixels of the IR scene projection system. This paper presents a description of a test facility's need, along with a history of the design, development and actual implementation of a non- uniformity data collection system. In addition to the primary purpose of collecting digital imagery for NUC, other system uses for digital imagery collection are discussed.
|