21 August 1998 Superresolved imaging sensors with field-of-view preservation
Author Affiliations +
Abstract
To recover spatial information from bandlimited images using maximum likelihood (ML) and constrained least squares techniques it is necessary that the image plane be oversampled. Specifically, oversampling allows the blur component induced by spatial integration of the signal over the finite size of the detector element(s) to be reduced. However, if oversampling in the image plane is achieved with a fixed array, the field of view (FOV) is proportionately reduced. Conversely, if the FOV is to be preserved then proportionately more samples are required implying the requirement for additional detector elements. An effective solution to obtaining oversampling in the image plane and subsequently preserving the FOV, is to use either controlled or uncontrolled microscanning. There are a number of methods to achieve microscanning including translation of the sensor array in the image plane and exploitation of airframe jitter. Three unique sixteen-times-Nyquist oversampled passive millimeter wave (PMMW) images; a point source, an extended source, and an M48 tank were carefully obtained. Both ML and constrained least squares (CLS) algorithms were used for restoration of spatial information in the images. Restoration of known extended source object functions (contained in the extended source image) resulted in resolution gains of 1.47 and 3.43 using the CLS and ML methods respectively, as measured by increase in effective aperture.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
William R. Reynolds, William R. Reynolds, John W. Hilgers, John W. Hilgers, Timothy J. Schulz, Timothy J. Schulz, Sengvieng A. Amphay, Sengvieng A. Amphay, } "Superresolved imaging sensors with field-of-view preservation", Proc. SPIE 3378, Passive Millimeter-Wave Imaging Technology II, (21 August 1998); doi: 10.1117/12.319398; https://doi.org/10.1117/12.319398
PROCEEDINGS
14 PAGES


SHARE
Back to Top