You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 March 1998In-service pressure vessel inspections
Eliminate any doubt that the vessel condition is suitable for continued operation through a planned inspection program that can mitigate or avoid failure of a pressure vessel due to corrosion or erosion. Proper inspection and documentation help you in identifying the problem and confirming the actual thickness leading to properly correcting deficiencies. Proper inspection is the antidote for any inspection program. Vessel life can be extended, risk can be minimized and unscheduled downtime can be prevented by implementing and managing your inspection program. A successful program includes maintaining accurate records, conducting inspections in regular intervals, and taking proper action on deficiencies. Therefore, you will know what you have and the condition of your equipment. Pressure vessel inspections can be classified into two general categories: surface inspection and volumetric inspection. Surface techniques for vessels include two of the commonest types: dye-penetrant and magnetic particle testing. Board qualified inspectors are required to perform these two tests. Volumetric techniques for vessels include three common types: ultrasonic testing, eddy current testing, and radiography. At Abbott the use of advanced NDE (non destructive examination) techniques, ultrasonic b-scan, has provided us with the proper tools to obtain the above objectives. We have been applying ultrasonic b-scan utilizing a pulse echo pitch catch technique to provide us with essential data on each of our pressure vessels. This reduces equipment downtime because the nondestructive examination usually takes place while our vessels are in service. As inspections take place we are able to view a real time image of the defective discontinuities on a video monitor. This ultrasonic b-scan technique is allowing us to perform fast accurate examinations covering up to 96% of the surface area of each pressure vessel.
The alert did not successfully save. Please try again later.
Marvin Fields, "In-service pressure vessel inspections," Proc. SPIE 3398, Nondestructive Evaluation of Utilities and Pipelines II, (15 March 1998); https://doi.org/10.1117/12.302513