Translator Disclaimer
Paper
31 August 1998 High-aspect-ratio single-crystal Si microelectromechanical systems
Author Affiliations +
Proceedings Volume 3511, Micromachining and Microfabrication Process Technology IV; (1998) https://doi.org/10.1117/12.324307
Event: Micromachining and Microfabrication, 1998, Santa Clara, CA, United States
Abstract
A review of fabrication techniques and testing of single crystal Si resonant devices with high aspect ratio capacitive transduction mechanisms has been presented. Deep trenches have been etched in single crystal Si using a Cl2 plasma generated by an electron cyclotron resonance (ECR) and an inductively coupled plasma (ICP) source. This etching has been extended to the fabrication of resonant devices thicker than 50 micrometer using a frontside-release process and these devices have been electrically tested. The thick devices allow larger capacitance between drive and sense plates, which in turn reduces required driving voltage and increases sensing current. In addition, an etching condition has been developed which can etch trenches as narrow as 0.1 micrometer to depths greater than 3 micrometer. This etch has been used to fabricate comb driven resonators with high aspect ratio gaps (greater than 30) between comb fingers. Finally, a fabrication method to integrate these single crystal Si mechanical devices with a conventional circuit process with only one additional masking step has been developed. Eleven micrometer thick clamped-clamped beam comb driven resonators have been fabricated and tested on the same chip with working CMOS transimpedance amplifiers. The resonator had a resonant frequency of 28.9 kHz and a maximum amplitude of vibration of 4.6 micrometer, while the amplifier had a 3-dB frequency of 150 kHz and a power dissipation of 1.25 (mu) W.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jason W. Weigold and Stella W. Pang "High-aspect-ratio single-crystal Si microelectromechanical systems", Proc. SPIE 3511, Micromachining and Microfabrication Process Technology IV, (31 August 1998); https://doi.org/10.1117/12.324307
PROCEEDINGS
10 PAGES


SHARE
Advertisement
Advertisement
Back to Top