4 June 1999 Stiffness of smart composites with shape memory alloy fibers in the presence of matrix cracks
Author Affiliations +
Abstract
The paper presents a methodology for evaluating the effective stiffness of unidirectional composite materials with shape memory alloy (SMA) fibers in the presence of matrix cracks. The solution is obtained for the case where SMA fibers in the intact composite are in the austenitic phase. However, elevated stresses in the sections of SMA fibers adjacent to the crack planes cause the martensitic transformation affecting the stiffness of the material. The solution has to account for thermal residual stresses in SMA and 'ordinary' fibers and in the matrix. The order of magnitude of these stresses is calculated in the paper for two representative composite systems. As follows from the numerical examples, thermal residual stresses in the SMA fibers increase proportionally to their volume fraction but remain relatively small. However, thermal stresses in the matrix may reach rather high values reducing the strength of the matrix by a significant factor.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Victor Birman, Victor Birman, } "Stiffness of smart composites with shape memory alloy fibers in the presence of matrix cracks", Proc. SPIE 3667, Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, (4 June 1999); doi: 10.1117/12.350107; https://doi.org/10.1117/12.350107
PROCEEDINGS
8 PAGES


SHARE
Back to Top