You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 May 1999Phase transition behavior of an amphoteric polymer gel
In order to characterize the deformation behavior of polymer gels for actuators, spatial distribution of deformation of anionic, cationic and amphoteric gels under the electric field was measured. Amphoteric gel was found to be a promising material for inducing symmetric deformation, compared with anionic and cationic gels. It was also found that the deformation of electro-active gels was mainly attributed to interfacial phenomenon between gel-electrode. It can be concluded that by the use of as many amphoteric gel-electrode interfaces as possible will provide us with electro-active polymer gels that are fast responsive, largely deformable with symmetric deformation mode.