Topographic and Hydrographic Applications
Proc. SPIE 3707, Recent advances in laser remote sensing, 0000 (28 May 1999); https://doi.org/10.1117/12.351331
Proc. SPIE 3707, Airborne laser radar: systems and methods for reconnaissance and terrain modeling, 0000 (28 May 1999); https://doi.org/10.1117/12.351338
Poster Session
Proc. SPIE 3707, Lidar sensing of the North Sea near Great Britain, 0000 (28 May 1999); https://doi.org/10.1117/12.351344
Topographic and Hydrographic Applications
Proc. SPIE 3707, Direct optical sensing of underwater sound fields: naval applications, 0000 (28 May 1999); https://doi.org/10.1117/12.351350
Proc. SPIE 3707, Airborne laser scanner simulation for 3D object modeling, 0000 (28 May 1999); https://doi.org/10.1117/12.351357
Proc. SPIE 3707, Advanced processing capabilities with imaging laser altimeter ScaLARS, 0000 (28 May 1999); https://doi.org/10.1117/12.351365
Proc. SPIE 3707, Assessing forest stand attributes by laser scanner, 0000 (28 May 1999); https://doi.org/10.1117/12.351373
Proc. SPIE 3707, Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor, 0000 (28 May 1999); https://doi.org/10.1117/12.351382
Poster Session
Proc. SPIE 3707, Remote sounding of vegetation characteristics by laser-induced fluorescence, 0000 (28 May 1999); https://doi.org/10.1117/12.351388
Fluorescence Analysis of Vegetation
Proc. SPIE 3707, Analysis of heavy-metal-stressed plants by fluorescence imaging, 0000 (28 May 1999); https://doi.org/10.1117/12.351332
Proc. SPIE 3707, New UV-A laser-induced fluorescence imaging system for near-field remote sensing of vegetation: characteristics and performance, 0000 (28 May 1999); https://doi.org/10.1117/12.351333
Proc. SPIE 3707, Fluorescence techniques as suitable methods to discriminate wheat genotypes under drought and high-temperature conditions, 0000 (28 May 1999); https://doi.org/10.1117/12.351334
Remote, Laser-based Chemical and Biological Detection I
Proc. SPIE 3707, Active range-gated spectrometric standoff detection and characterization of bioaerosols, 0000 (28 May 1999); https://doi.org/10.1117/12.351335
Proc. SPIE 3707, Compact water-vapor Raman lidar, 0000 (28 May 1999); https://doi.org/10.1117/12.351336
Proc. SPIE 3707, Mini-Raman lidar system for standoff in-situ interrogation of surface contaminants, 0000 (28 May 1999); https://doi.org/10.1117/12.351337
Proc. SPIE 3707, Detection of chemical agent aerosols, 0000 (28 May 1999); https://doi.org/10.1117/12.351339
Proc. SPIE 3707, Conceptual design of an acquisition, processing, and control system for a semi-autonomous airborne differential absorption lidar system, 0000 (28 May 1999); https://doi.org/10.1117/12.351340
Proc. SPIE 3707, Performance characterization and ground testing of an airborne CO2 differential absorption lidar system (phase II), 0000 (28 May 1999); https://doi.org/10.1117/12.351341
Proc. SPIE 3707, Water vapor micropulse differential absorption lidar, 0000 (28 May 1999); https://doi.org/10.1117/12.351342
Remote, Laser-based Chemical and Biological Detection II
Proc. SPIE 3707, Coherent remote optical sensor system overview, 0000 (28 May 1999); https://doi.org/10.1117/12.351343
Aviation and Military Applications
Proc. SPIE 3707, Properties of aircraft wake vortices measured by ground-based continuous-wave Doppler lidar, 0000 (28 May 1999); https://doi.org/10.1117/12.351345
Proc. SPIE 3707, Automatic battle damage assessment based on laser radar imagery, 0000 (28 May 1999); https://doi.org/10.1117/12.351346
Space-based Applications
Proc. SPIE 3707, Thermal considerations for the SPARCLE optical system, 0000 (28 May 1999); https://doi.org/10.1117/12.351348
Proc. SPIE 3707, Application of lidar winds to data assimilation and numerical weather prediction, 0000 (28 May 1999); https://doi.org/10.1117/12.351349
Proc. SPIE 3707, Three-dimensional tracking and imaging laser scanner for space operations, 0000 (28 May 1999); https://doi.org/10.1117/12.351351
Proc. SPIE 3707, On-orbit testing of the video guidance sensor, 0000 (28 May 1999); https://doi.org/10.1117/12.351352
Advanced Components and Techniques
Proc. SPIE 3707, Electronic beam control for advanced laser radar, 0000 (28 May 1999); https://doi.org/10.1117/12.351353
Proc. SPIE 3707, Use of nonscanning coherence radar for distance measurement, 0000 (28 May 1999); https://doi.org/10.1117/12.351354
Proc. SPIE 3707, 50-Hz diode-pumped Er:glass eye-safe laser transmitter, 0000 (28 May 1999); https://doi.org/10.1117/12.351355
Proc. SPIE 3707, Novel laser on vibronic crystal with electron excitation as a lidar transmitter, 0000 (28 May 1999); https://doi.org/10.1117/12.351356
Proc. SPIE 3707, Use of the fast Hankel transform for laser radar mode propagation, overlap integral calculation, and laser resonator analysis, 0000 (28 May 1999); https://doi.org/10.1117/12.351358
Imaging Systems I
Proc. SPIE 3707, Discriminating Interceptor Technology Program (DITP) laser radar, 0000 (28 May 1999); https://doi.org/10.1117/12.351359
Proc. SPIE 3707, 3D-imaging laser scanner for close-range metrology, 0000 (28 May 1999); https://doi.org/10.1117/12.351360
Proc. SPIE 3707, Laser field imaging through Fourier transform heterodyne, 0000 (28 May 1999); https://doi.org/10.1117/12.351361
Proc. SPIE 3707, Characterization of scannerless ladar, 0000 (28 May 1999); https://doi.org/10.1117/12.351362
Proc. SPIE 3707, Scannerless imaging ladar using a laser diode illuminator and FM/cw radar principles, 0000 (28 May 1999); https://doi.org/10.1117/12.351363
Proc. SPIE 3707, Gated viewing for target detection and target recognition, 0000 (28 May 1999); https://doi.org/10.1117/12.351364
Proc. SPIE 3707, Modeling and performance of a polarization active imager at lambda=806 nm, 0000 (28 May 1999); https://doi.org/10.1117/12.351366
Proc. SPIE 3707, Wide field of view coherent detection, 0000 (28 May 1999); https://doi.org/10.1117/12.351367
Imaging Systems II
Proc. SPIE 3707, Compact multichannel imaging laser radar receiver, 0000 (28 May 1999); https://doi.org/10.1117/12.351368
Proc. SPIE 3707, Three-dimensional and two-dimensional sequence spatial-frequency domain processing of speckled ladar images for automatic target recognition, 0000 (28 May 1999); https://doi.org/10.1117/12.351369
Proc. SPIE 3707, Performance of an erbium laser vibration sensor, 0000 (28 May 1999); https://doi.org/10.1117/12.351370
Proc. SPIE 3707, Review of recent advancements in the development of compact high-power pulsed CO2 laser radar systems, 0000 (28 May 1999); https://doi.org/10.1117/12.351371
Poster Session
Proc. SPIE 3707, Results of ocean surface remote sensing with spaceborne lidar Balkan from the space station Mir, 0000 (28 May 1999); https://doi.org/10.1117/12.351372
Proc. SPIE 3707, Compact ground-based UV DIAL system for measurements of tropospheric ozone, 0000 (28 May 1999); https://doi.org/10.1117/12.351374
Proc. SPIE 3707, OPO-based lidar system for differential absorption measurements of methane and mid-IR trace gases, 0000 (28 May 1999); https://doi.org/10.1117/12.351375
Proc. SPIE 3707, Series of laser scanning techniques as a nondestructive tool for testing solar cells and batteries, 0000 (28 May 1999); https://doi.org/10.1117/12.351376
Proc. SPIE 3707, Multiwave laser irradiator for remote sensing, 0000 (28 May 1999); https://doi.org/10.1117/12.351377
Aviation and Military Applications
Proc. SPIE 3707, Airborne Doppler lidar turbulence detection: ACLAIM flight test results, 0000 (28 May 1999); https://doi.org/10.1117/12.351378
Space-based Applications
Proc. SPIE 3707, Design and development of the SPARCLE coherent lidar transceiver, 0000 (28 May 1999); https://doi.org/10.1117/12.351379
Remote, Laser-based Chemical and Biological Detection II
Proc. SPIE 3707, U.S. Army Soldier and Biological Chemical Command counterproliferation long-range biological standoff detection system (CP LR-BSDS), 0000 (28 May 1999); https://doi.org/10.1117/12.351380
Space-based Applications
Proc. SPIE 3707, Video guidance sensor: optical performance predictions and results from STS-95 experiment, 0000 (28 May 1999); https://doi.org/10.1117/12.351381
Advanced Components and Techniques
Proc. SPIE 3707, Optical detector selection for 1.5-um KTP OPO atmospheric lidar, 0000 (28 May 1999); https://doi.org/10.1117/12.351383