You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 February 1999Local-field effect and interaction of dense Bose-Einstein condensate with an electromagnetic field
We have developed the quantum theory of the interaction of ultracold atomic ensemble with the electromagnetic field of vacuum and laser photons. The main attention is paid to the consistent consideration of dynamical dipole-dipole interactions in the case of the second quantized matter. We show that the retardation effects significantly influence the behavior of atomic ensemble in the radiation field. We have derived the general system of equations, which can be used for the investigation of various linear and nonlinear phenomena in atom optics. As an example, we have considered the diffraction of ultracold atomic beam by the standard laser wave. We show that with the increase of the initial density of the intensities of diffractions modes decrease. We also show that the angles of diffraction for different modes depend on the density.
The alert did not successfully save. Please try again later.
Konstantin V. Krutitsky, Frank Burgbacher, Juergen Audretsch, "Local-field effect and interaction of dense Bose-Einstein condensate with an electromagnetic field," Proc. SPIE 3736, ICONO '98: Quantum Optics, Interference Phenomena in Atomic Systems, and High-Precision Measurements, (25 February 1999); https://doi.org/10.1117/12.340103