You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 June 1999Characterization of bacteriorhodopsin films for optical data storage and image processing
Bacteriorhodopsin (BR) has been proven to be an effective non-linear media for a variety of applications, such as optically addressable spatial light modulators, volumetric memories, optical image processing systems, optical sensors, and optical correlators. However, practical realization of such systems with BR depends upon the specific characteristics of this material. In this report we present experimental results of the time evolution and intensity dependent characteristics of a BR gelatin film. In particular we studied the spectral dependence of the optical density/refraction index modulation. A holographic technique was used to investigate the exposure characteristics of photorefraction, recording versus storage time, as well as the connection between the diffraction efficiency of the recorded grating and light induced scattering (noise)--the parameters that are of primary importance for such applications as high density memory systems and optical correlators.
The alert did not successfully save. Please try again later.
Vladimir B. Markov, Andreas Rohrbacher, Amit K. Lal, James E. Millerd, James D. Trolinger, "Characterization of bacteriorhodopsin films for optical data storage and image processing," Proc. SPIE 3793, Operational Characteristics and Crystal Growth of Nonlinear Optical Materials, (28 June 1999); https://doi.org/10.1117/12.351403