You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 December 1999Modification of organic interfaces: from molecular level measurements to injection characteristics
Ultra-violet and X-ray photoemission spectroscopy and current- voltage measurements were used to investigate the fundamental mechanisms responsible for the improvement of hole injection between modified indium-tin-oxide (ITO) surfaces and the hole- transport layer (HTL) of an organic light emitting diode. Two ITO surface modification techniques were investigated: oxygen- plasma treatment and deposition of an ultra-thin organic interlayer between the ITO and the HTL. We demonstrate that the improvement in injection is due to an increase in surface work function of ITO mediated by the presence of an oxygen radical in the first case, and to the presence of an intermediate energy level between the ITO Fermi level and the HTL highest occupied molecular orbital in the second.
The alert did not successfully save. Please try again later.
Ian G. Hill, D. Milliron, J. Schwartz, Antoine Kahn, "Modification of organic interfaces: from molecular level measurements to injection characteristics," Proc. SPIE 3797, Organic Light-Emitting Materials and Devices III, (17 December 1999); https://doi.org/10.1117/12.372720