You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 December 1999Techniques to detect and analyze photomask CD uniformity errors
With increasing mask error enhancement factors (MEEF), detecting and analyzing photomask critical dimension (CD) uniformity errors is critical for understanding how photomasks can be manufactured to afford high wafer yields. Using UV pattern inspection tools, recent improvements in automated inspection algorithms can now provide CD error detection below 50 nm. This level of sensitivity is necessary in order to provide a clear picture of the reticles' contribution to the final wafer image and possibly function. However, dispositioning CD errors less than 100 nm is very challenging at defect review which has previously resulted in misclassification of true CD errors. Classifying very small errors require the high precision and resolution of a metrology tool. A process has been developed for detecting very small CD errors with a UV inspection tool and the coordinates of areas of concern transferred to a CD SEM for sizing, review and disposition. In this study, we have characterized the sensitivity and false defect performance of a new algorithm with production masks and a new programmed defect test mask. The inspection results were transferred to a CD SEM for analysis. SEM measurements were taken to validate the sensitivity of the algorithm and to quantify the calibration accuracy of the review tools of the inspection system.
The alert did not successfully save. Please try again later.
Anthony Vacca, Waiman Ng, Geoffrey T. Anderson, Barry Rockwell, Aihua Dong, Darren Taylor, "Techniques to detect and analyze photomask CD uniformity errors," Proc. SPIE 3873, 19th Annual Symposium on Photomask Technology, (30 December 1999); https://doi.org/10.1117/12.373316