30 August 1999 W-coating for MEMS
Author Affiliations +
Proceedings Volume 3874, Micromachining and Microfabrication Process Technology V; (1999) https://doi.org/10.1117/12.361215
Event: Symposium on Micromachining and Microfabrication, 1999, Santa Clara, CA, United States
The integration of miniaturized mechanical components has spawned a new technology known as microelectromechanical systems (MEMS). Surface micromachining, defined as the fabrication of micromechanical structures from deposited thin films, is one of the core technological processes underlying MEMS. Surface micromachined structures have a large ratio of surface area to volume which makes them particularly vulnerable to adhesion to the substrate or adjacent structures during release on in use- a problem is called stiction. Since microactuators can have surfaces in normal or sliding contact, friction and wear are critical issues for reliable operation of MEMS devices. Surface modifications are needed to reduce adhesion and friction in micromechanical structures. In this paper, we will present a process used to selectively coat MEMS devices with Tungsten using a CVD process. We will discuss the effect of wet and vapor phase cleans along with different process variables. Endurance of the W coating is important, especially in applications where wear due to repetitive contacts with the film may occur. Further, tungsten is hard and chemically inert. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sita S. Mani, Sita S. Mani, James G. Fleming, James G. Fleming, Jeffry J. Sniegowski, Jeffry J. Sniegowski, } "W-coating for MEMS", Proc. SPIE 3874, Micromachining and Microfabrication Process Technology V, (30 August 1999); doi: 10.1117/12.361215; https://doi.org/10.1117/12.361215

Back to Top