3 September 1999 Microfabrication of single-crystal silicon multiple torsional oscillators
Author Affiliations +
Proceedings Volume 3875, Materials and Device Characterization in Micromachining II; (1999) https://doi.org/10.1117/12.360460
Event: Symposium on Micromachining and Microfabrication, 1999, Santa Clara, CA, United States
Abstract
Micro-oscillators of different designs and dimensions have been fabricated for use in a nuclear magnetic resonance force microscope. The various designs include double and triple torsional oscillators which have high Q's at room temperature (approximately equals 10,000) when operating at the upper cantilever and upper torsional resonances. Depending on design and dimensions, the resonance frequencies vary from tens to hundreds of kHz. Typical dimensions of the designs are (200 X 150) micrometers 2 X 200 nm thick. To fabricate these devices, microelectric fabrication techniques were employed. Si (100) wafers were patterned, etched, and boron-implanted at a dose of 4.2 X 1016 cm-2 and an energy of 134 keV. A post-implant anneal was then performed at 1000 degree(s)C, followed by a KOH wet-etch which leaves the free-standing boron-doped oscillators. Depending on the doping level, anneal, and etch parameters, the thickness of the oscillators varies from 100 - 400 nm. In order to optimize the design and fabrication process, resonance frequencies and Q's have been characterized using fiber-optic interferometry. For example, the upper cantilever resonance of one design has been found to have a minimum detectable force of 1.5 X 10-16 N/(root)Hz at room temperature.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Michelle Diane Chabot, Michelle Diane Chabot, John T. Markert, John T. Markert, } "Microfabrication of single-crystal silicon multiple torsional oscillators", Proc. SPIE 3875, Materials and Device Characterization in Micromachining II, (3 September 1999); doi: 10.1117/12.360460; https://doi.org/10.1117/12.360460
PROCEEDINGS
9 PAGES


SHARE
RELATED CONTENT


Back to Top