Paper
4 November 1999 Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long-wavelength focal plane arrays
Author Affiliations +
Abstract
This paper compares the technical merits of two IR detector arrays technologies; photovoltaic HgCdTe and quantum well IR photoconductors (QWIPs). It is clearly shown that long wavelength IR (LWIR) QWIP can not complete with HgCdTe photodiode as the single device especially at higher temperature operation due to fundamental limitations associated with intersubband transitions. However, the advantage of HgCdTe is less distinct in temperature range below 50 K due to problems involved in a HgCdTe material. Even though that QWIP is a photoconductor, several its properties such as high impedance, fast response time, long integration time, and low power consumption, well comply requirements of fabrication large focal plane arrays. Due to the high material quality at low temperature, QWIP has potential advantages over HgCdTe for very LWIR FPA applications in terms of the array size, uniformity, yield and cost of the systems.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Antoni Rogalski "Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long-wavelength focal plane arrays", Proc. SPIE 3890, Fourth International Conference on Material Science and Material Properties for Infrared Optoelectronics, (4 November 1999); https://doi.org/10.1117/12.368341
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Mercury cadmium telluride

Quantum well infrared photodetectors

Sensors

Long wavelength infrared

Photodiodes

Staring arrays

Quantum efficiency

Back to Top