You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 September 1999Huber effect and its application to micromotors
The micromotor is an extremely small device a few millimeters or less in size. Micromotors in the order of microns are realized by MEMS technology. Important applications in biomedicine include ultrasound probes for blood vessels, microrobots for colon intervention, smart pills and nanolitre pumps. Other uses include actuator for MOEMS and small variable capacitors. One exciting implication of micromotors is that they can be powered by rectifying mechanical vibrations. MEMS are playing an important role in our daily life as these systems are widely used in optics, communication and information systems, fluidics, biotechnology and medicine, scanning probe microscopes, automobiles and aerospace. There are a number technical challenges with micromotors, including the need to reduce stiction and increase torque. The precise geometry of the motor is usually tightly coupled to the stiction effect - the sticking of adjacent surfaces after release due to static friction. Piezoelectric, electrostatic and electromagnetic effects have been investigated to produce the electromotive force for the micromotor. However, we propose a micromotor design based on the Huber effect, as this will allow a new range of geometries and hence possibilities for managing stiction. To date, there have been no reported attempts at using the Huber effect, and this is possibly due to it being a poorly understood phenomenon. The reason for this is that large motors that utilize the Huber effect are self-destructive and hence have never been reliably characterized. Such motors are shown to be able to operate form a dc or ac source, and this property may be valuable in some MEMS applications.
The alert did not successfully save. Please try again later.
Yullia Shen, Boon Kain Tay, Benjamin Thompson, Wen L. Soong, Bruce R. Davis, Derek Abbott, "Huber effect and its application to micromotors," Proc. SPIE 3891, Electronics and Structures for MEMS, (29 September 1999); https://doi.org/10.1117/12.364436