8 October 1999 Nanometer x-ray lithography
Author Affiliations +
New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Frank T. Hartley, Frank T. Hartley, Chantal G. Khan Malek, Chantal G. Khan Malek, } "Nanometer x-ray lithography", Proc. SPIE 3893, Design, Characterization, and Packaging for MEMS and Microelectronics, (8 October 1999); doi: 10.1117/12.368464; https://doi.org/10.1117/12.368464


Back to Top