Translator Disclaimer
13 June 2000 Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance
Author Affiliations +
Proceedings Volume 3914, Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical; (2000) https://doi.org/10.1117/12.388058
Event: BiOS 2000 The International Symposium on Biomedical Optics, 2000, San Jose, CA, United States
Abstract
We present results on the retrieval of skin optical properties obtained by fitting of measurements of the diffuse reflectance of human skin. Reflectance spectra are simulated using an analytical model based on the diffusion approximation. This model is implemented in a simplex fit routine. The skin optical model used consists of five layers representing epidermis, capillary blood plexus, dermis, deep blood plexus and hypodermis. The optical properties of each layer are assumed homogeneously distributed. The main optical absorbers included are melanin in epidermis and blood. The experimental setup consists of a HP photospectrometer equipped with a remote fiber head. Total reflectance spectra were measured in the 400 - 820 nm wavelength range on the volar underarm of 19 volunteers under various conditions influencing the blood content and oxygenation degree. Changes in the reflectance spectra were observed. Using the fit routine changes in blood content in the capillary blood plexus and in the deep blood plexus could be quantified. These showed different influences on the total reflectance. The method can be helpful to quantitatively assess changes in skin color appearance such as occurs in the treatment of port wine stains, blanching, skin irritation and tanning.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Lucien F. A. Douven and Gerald W. Lucassen "Retrieval of optical properties of skin from measurement and modeling the diffuse reflectance", Proc. SPIE 3914, Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, (13 June 2000); https://doi.org/10.1117/12.388058
PROCEEDINGS
12 PAGES


SHARE
Advertisement
Advertisement
Back to Top