13 April 2000 State-of-the-art HgCdTe infrared devices
Author Affiliations +
Proceedings Volume 3948, Photodetectors: Materials and Devices V; (2000) https://doi.org/10.1117/12.382141
Event: Symposium on Integrated Optoelectronics, 2000, San Jose, CA, United States
Abstract
Mercury Cadmium Telluride (HgCdTe) material growth, detector array fabrication and read out integrated circuit (ROIC) design and fabrication technologies have continued to advance and have led to the demonstration of high resolution, low noise and large format reliable hybrid IR Focal Plane Arrays (IRFPAs). MBE HgCdTe-based p-on-n planar heterostructure device technology has matured to a point that high performance IRFPAs are being fabricated routinely for applications in the 1-16micrometers spectral region. Control and flexibility have proven to be distinct advantages of MBE. Rapid advances in the commercial submicron Si-CMOS process continue to allow increasing functionality on ROICs. Hybrid focal pane arrays, formed by cold welding of indium columns deposited on the detector and the ROIC, are being fabricated to suit a broad range of military, civilian and scientific applications. High performance HgCdTe/CdZnTe 256 by 256, 640 by 480 and 1024 by 1024 focal plane arrays operating over a broad range of wavelengths, temperatures, and background radiation flux, have been produced. To mitigate issues associated with the thermal expansion coefficient mismatch between Si ROIC and CdZnTe substrate, growth of HgCdTe on alternate substrates, such as Si and sapphire, has been developed for large, 1024 by 1024 and 2048 by 2048 HgCdTe FPAs operating in the Short Wavelength IR (SWIR) 0.9-2.5 micrometers and mid wavelength IR 2.5-5.5 micrometers spectral bands. Simultaneous two-color IR imaging has been proven feasible, suing MBE in situ grow multilayer structures. Hybrid visible silicon imager, where detectors are processed on silicon and hybridized to the same ROIC fabricated originally for HgCdTe devices, is emerging as a competitive technology for imagin in the 0.3-1.05 micrometers spectral region. This paper provides an overview of the status of HgCdTe materials, detectors and FPA technologies at Rockwell Science Center.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jagmohan Bajaj, Jagmohan Bajaj, } "State-of-the-art HgCdTe infrared devices", Proc. SPIE 3948, Photodetectors: Materials and Devices V, (13 April 2000); doi: 10.1117/12.382141; https://doi.org/10.1117/12.382141
PROCEEDINGS
13 PAGES


SHARE
Back to Top